Math 4550 Topic 4 - Homomorphisms

The way we compare two groups is with a function that respects their group properties

Def: Let
$$G_1$$
 and G_2 be groups.
A function $\varphi: G_1 \rightarrow G_2$ is called a
homomorphism if
 $\varphi(ab) = \varphi(a) \varphi(b)$
for all $a, b \in G_1$
 G_1
 G_2
 $\varphi(ab) = \varphi(a) \varphi(b)$
 $\varphi(ab) = \varphi(a) \varphi(b)$
 $\varphi(ab) = \varphi(a) \varphi(b)$
Note: If G_1 and G_2 have operations $*_1$ and $*_2$
respectively than the equation above is
 $\varphi(a *_1 b) = \varphi(a) *_2 \varphi(b)$
but we just write
 $\varphi(ab) = \varphi(a) \varphi(b)$

The Kernel of q is $Ker(\varphi) = \{ x \in G, | \varphi(x) = e_2 \}$ where ez is the identity of G2. ker(Q) φ $\cdot e_2$ The image of q is $im(q) = \{q(x) \mid x \in G\}$ P iml im(q) Gı

If $\varphi: G_1 \rightarrow G_2$ is a homomorphism that is one-to-one and onto then we call φ an <u>isomorphism</u> and say that G_1 and G_2 are isomorphic and write $G_1 \cong G_2$.

Let's show that φ is a homomorphism. Given $X, Y \in \mathbb{Z}$ we have that $\varphi(x+y) = 2(x+y) = 2x+2y = \varphi(x) + \varphi(y)$. Thus, φ is a homomorphism.

Note that ker(q) = 203 and

$$im(q) = \{ \varphi(x) \mid x \in \mathbb{Z} \}$$

= $\{ 2x \mid x \in \mathbb{Z} \}$
= 22

- ater we will see that a homomorphism
 $\varphi: G_1 \rightarrow G_2$ is one-to-one iff $ker(\varphi) = \{e_i\}$
Here $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ and $ker(\varphi) = \{o\}$.
Thus φ is one-to-one.

Recall that φ is onto iff $im(\varphi) = \mathbb{Z}$.
Here $im(\varphi) = 2\mathbb{Z} \neq \mathbb{Z}$.
Thus, φ is not onto

Summarizing the above,

$$\varphi: \mathbb{Z} \to \mathbb{Z}$$
 given by $\varphi(x) = 2x$
is a homomorphism.
 $ker(\varphi) = \{o\}$ and $im(\varphi) = 2\mathbb{Z}$.
 $ker(\varphi) = \{o\}$ and $im(\varphi) = 0$.
 φ is one-to-one but not onto.
 φ is one-to-one but not onto.
So, φ is not an isomorphism.

Ex: Consider the two groups Zz and Uz. g2 3 $\langle 0_3, \cdot \rangle$ S 0 (23,+) 5 2 9 Z б 0 S2 0 ٢ 6 Ī 52 S2 9 0 Z Do you see how these tables are the same under the correspondence $\overline{z} \longleftrightarrow \beta^2$ Ĩ~Ĵ $\overline{0} \leftrightarrow |$ The groups are essentially the same. The elements are just called different things and the We can describe this with an isomorphism. Let q: 743-)U3 be given by Uz $\varphi(\bar{o}) = 1$ $\varphi(\bar{1}) = S$ $\varphi(\bar{z}) = \beta^2$ $ker(\varphi) = \{5\}$ $im(\varphi) = U_3$

q is 1-1 and onto. Why is q a homomosphism? We need to check that $\varphi(x+y) = \varphi(x)\varphi(y)$ operation operation in ZZ3 in Uz for all X, YEZ3. But the tables show this! For example, $\varphi(\bar{1}+\bar{z}) = \varphi(\bar{3}) = \varphi(\bar{0}) = |$ $\varphi(\bar{1})\varphi(\bar{z}) = g \cdot g^{z} = 1$

Or instead of seeins that the tables verify that q is a

homomorphism you can do all
9 c hecks:

$$\varphi(\bar{0}+\bar{0}) = \varphi(\bar{0}) = 1 = 1 \cdot 1 = \varphi(\bar{0})\varphi(\bar{0})$$

 $\varphi(\bar{0}+\bar{1}) = \varphi(\bar{1}) = g = 1 \cdot g = \varphi(\bar{0})\varphi(\bar{1})$
 $\varphi(\bar{0}+\bar{1}) = \varphi(\bar{1}) = g = 1 \cdot g = \varphi(\bar{0})\varphi(\bar{1})$
 $\varphi(\bar{0}+\bar{1}) = \varphi(\bar{1}) = g = 1 \cdot g = \varphi(\bar{0})\varphi(\bar{0})$
 $\varphi(\bar{1}+\bar{0}) = \varphi(\bar{1}) = g = g \cdot g = g \cdot g = \varphi(\bar{1})\varphi(\bar{0})$
 $\varphi(\bar{1}+\bar{2}) = \varphi(\bar{0}) = 1 = g \cdot g^2 = g \cdot g = \varphi(\bar{1})\varphi(\bar{0})$
 $\varphi(\bar{1}+\bar{2}) = \varphi(\bar{0}) = 1 = g^2 \cdot g = \varphi(\bar{1})\varphi(\bar{0})$
 $\varphi(\bar{1}+\bar{1}) = \varphi(\bar{0}) = g^2 = g^2 = g^2 \cdot g = \varphi(\bar{1})\varphi(\bar{0})$
 $\varphi(\bar{1}+\bar{1}) = \varphi(\bar{0}) = 1 = g^2 \cdot g = \varphi(\bar{1})\varphi(\bar{1}) = g(\bar{1}) = g^2 \cdot g = g(\bar{1})\varphi(\bar{1}) = g(\bar{1}) = g(\bar{1}) = g^2 \cdot g = g(\bar{1})\varphi(\bar{1}) = g(\bar{1}) = g(\bar{1}) = g(\bar{1}) = g^2 \cdot g = g(\bar{1})\varphi(\bar{1}) = g(\bar{1}) = g(\bar$

Thus, φ is an isomorphism and $\mathbb{Z}_3 \cong \mathbb{U}_3$.

Theorem: Let
$$\varphi: G_1 \supset G_2$$
 be a homomorphism.
Let e_1 and e_2 be the identity elements
of G_1 and G_2 , respectively.
Then:
(1) $\varphi(e_1) = e_2$
(2) If $x \in G_1$, then $\varphi(x^1) = [\varphi(x)]^{-1}$
(3) If $x \in G$ and $k \in \mathbb{Z}$, then $\varphi(x^k) = [\varphi(x)]^k$
(4) $\ker(\varphi) \leq G_1$
(5) $\operatorname{im}(\varphi) \leq G_2$
(6) φ is one-to-one iff $\ker(\varphi) = \frac{1}{2}e_1^3$
(7) φ is onto iff $\operatorname{im}(\varphi) = G_2$.
(9) $\varphi(e_1) = \varphi(e_1e_1) = \varphi(e_1)\varphi(e_1)$
Thus,
 $\varphi(e_1) = \varphi(e_1e_1) = \varphi(e_1)\varphi(e_1)$
Thus,
 $\varphi(e_1) = \varphi(e_1)^{-1}\varphi(e_1)\varphi(e_1)$

(i) By part D we know
$$\varphi(e_1) = e_2$$
.
(i) By part D we know $\varphi(e_1) = e_2$.
Thus, $e_1 \in \ker(\varphi)$
(ii) Suppose $x, y \in \ker(\varphi)$.
Then $\varphi(x) = e_2$ and $\varphi(y) = e_2$.
Thus, $\varphi(xy) = \varphi(x)\varphi(y) = e_2e_2 = e_2$
So, $xy \in \ker(\varphi)$

(iii) Suppore
$$z \in ker(\varphi)$$
.
Then $\varphi(z) = e_z$.
Thus. $\varphi(z^{-1}) = [\varphi(z)]^{-1} = e_z^{-1} = e_z$
So, $z^{-1} \in ker(\varphi)$.
By $(z), (ii), (iii)$ we get $ker(\varphi) \leq G_1$
(i) Since $e_i \in G_1$
and $e_z = \varphi(e_1)$
we know $e_z \in im(\varphi)$
(ii) Let $a_i b \in im(\varphi)$.
Then there exist
 $x, y \in G_1$ where
 $\varphi(x) = a$ and
 $\varphi(y) = b$.
Then, $ab = \varphi(x)\varphi(y) = \varphi(xy)$
Since $xy \in G_1$ we get
that $ab \in im(\varphi)$.
Gradient for $y \in G_1$
 $y = (x, y) = (x, y) = (x, y)$
Since $xy \in G_1$ we get
that $ab \in im(\varphi)$.
Gradient for $y \in G_1$
 $y = (x, y) = (x, y) = (x, y)$
Since $xy \in G_1$ we get
that $ab \in im(\varphi)$.
Gradient for $y \in G_1$
 $y = (x, y) = (x, y) = (x, y)$
Since $xy \in G_1$ we get
that $ab \in im(\varphi)$.

(iii) Let
$$c \in in(\varphi)$$
.
Then there exists
 $z \in G_1$ where
 $\varphi(z) = c$.
Then, $c' = [\varphi(z)]^{-1} = \varphi(z')$
and $z'' \in G_1$.
Thus, $c' \in in(\varphi)$.

By (i), (ii), (iii) we have that $im(\varphi) \leq G_z$

6
(
$$\langle \Rightarrow \rangle$$
) Suppose φ is one-to-one.
Let's show that $\ker(\varphi) = \Xi e_1 \Im$
We know from part (D) that $e_1 \in \ker(\varphi)$ since $\varphi(e_1) = e_2$.
Suppose $\chi \in \ker(\varphi)$.
Then $\varphi(\chi) = e_2 = \varphi(e_1)$
But φ is one-to-one with $\varphi(\chi) = \varphi(e_1)$.
This implies $\chi = e_1$.
Thus, $\ker(\varphi) = \Xi e_1 \Im$
(\Rightarrow) Suppose $\ker(\varphi) = \Xi e_1 \Im$
Lets show that φ is one-to-one.
Suppose $\varphi(\chi) = \varphi(y)$ where $\chi, y \in G_1$.

Then
$$q(x)[q(y)]^{-1} = q(y)[q(y)]^{-1}$$

 $s_{-}, q(x)q(y') = e_{2}$
Thus, $q(xy') = e_{2}$
Thus, $xy' \in ker(q)$.
 $s_{-}, xy'' = e_{1}$ because $ker(q) = \{e_{1}\}$.
Thus, $xy'y = e_{1}y$.
 $s_{-}, xy''y = e_{1}y$.
Thus, $xy'y = e_{1}y$.
 $s_{-}, x = y$.
Thus q is one-to-one.
 $f = q$ is onto iff $im(q) = G_{2}$.
This is the definition of onto.

